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The study of the flow of a vibrationally excited gas has acquired particular importance 
in connection with the solution of problems of gasdynamical stability of strongly nonequi- 
librium states of active media, and also in the physics of nonequilibrium discharges in 
gas flows. In [i, 2] the problem of steady shock waves in a gas of diatomic molecules with 
excited vibrational degrees of freedom was studied. It was shown that the flow of a non- 
equilibrium gas can be steady in the shock wave only for a certain intensity and the propaga- 
tion of these waves is analogous to detonation waves. It was noted in [3] that weak shock 
waves in a vibrationally excited gas can be amplified and transform into the steady regime 
of normal Jouguet detonation. The condition for the amplification of weak discontinuities 
propagating in a nonuniform flow of excited molecules was considered in [4]. In [5], using 
the Landau-Teller theory of vibrational relaxation, the structure of steady detonation waves 
is described :For the Jouguet regime. In [6] the effect of a dissociation nonequilibrium 
in a vibrationally excited gas on the propagation of detonation waves was studied. 

In the solution of many applied problems, such as the loss of flow uniformity and the 
separation of ejections of gases in rapidly flowing discharges [7], together with the study 
of shock-type flows, the study of shockless flows of vibrationally excited diatomic gases 
is of great w~lue. 

In the present paper we describe the steady regimes of these flow types in a pipe of 
constant cross section. Analogies with the theory of combustion are pointed out. Using 
the kinetic tlheory of vibrational relaxation in a system of anharmonic oscillators, we study 
the structure of the characteristic steady flow types (shock and shock-free types) of vibra- 
tionally excited nitrogen. 

Let a vibrationally excited gas flow along the X axis (one-dimensional flow). Three 
characteristic regions can be identified. In the first region (x < 0) there is a uniform 
nonequilibrium medium in which there are (on average) S o vibrational quanta per molecule. 
The temperature T o of the translational-rotational motion of the molecule is such that So > 
S~(T0), where Sp(T0) is the average number of vibrational quanta per molecule in the equilib- 
rlum state corresponding to the gas temperature T a. The gas has a density P0 and moves 
with velocity D. The nonequilibrium nature of the medium in this region can be ensured 
by using a discharge or a supersonic jet, for example. The second region is a transition 
region. Here the incident vibrationally excited gas relaxes. The origin of the coordinate 
system is chosen to be inside this region. In the third region, coming after the relaxation 
zone, the gas is uniform and in equilibrium. 

From the conservation laws and the equation of state of an ideal gas, we obtain a re- 
lation between the thermodynamic quantities of the gas on either side of the relaxaton zone 
[1]: 

Z + 6 + am (e o - -  ep (T1))/kT o 
~z+ i (1) 

Here Y = Vl/V0, Z = Pl/P0; V = i/p is the specific volume; p is pressure, e =~w0/m; S is 
the vibrational energy per unit mass of the gas; ~m0 is the energy of a vibrational quantum 
of the molecule; m is the mass of a molecule. The quantities with subscript i refer to 
the equilibrium gas region. 

From conservation of mass and momentum we also have the relation 

Y = t z - -  t 
�94 ~, ( 2 )  

w h e r e  M = D / c o  i s  t h e  M a c h  n u m b e r  a n d  c o = ( 1 . 4 k T o / m )  1 / 2  
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Using (2) we reduce (1) to the form 

Z(i ) = t + - -  7(M2--i) [ t t 2  " --'-~- (1 7 P--"?) 29,6M2F )1/2] " 

�9 ~L(O ~ ) 
F ~ f -  [So - -  Sp (T1)] �9 

k 0 

(3) 

With the help of (3) we can divide the relaxation adiabatic curve into segments corresponding 
to shock and shock-free flow. In order to do this, it is only necessary to take into account 
that (3) [as well as (2)] is satisfied at each point of the transition region if we let 
Z + P/P0, Y § V/V0, Sp(TI) + S; here p, V, and S are the values of the quantities in the 
transition region. We note that with this substitution (2) determines the equation of the 
Michelson lines. The type of flow depends only on the sign in front of the square root 
in (3). This is obvious when applied to the beginning of the transition region, where S = 
S o . The solution Z(+) describes a flow containing shock jumps in the parameters of the gas. 
The solution Z(_) describes a flow with continuous parameters. The change in the parameters 
is due entirely to vibrational relaxation in the transition layer. 

Figure 1 gives a qualitative representation of the relaxation and shock adiabatic curves 
(lines 1 and 2). The first is described by (i), and the second by the relation Y = (Z + 6)" 
(6Z + 1) -I According to (3), the relaxation adiabatic curve can be broken up into three 
regions corresponding to steady-state solutions of the system of equations for the state 
of the moving nonequilibrium gas. The solution Z(+) corresponds to the segment A2C + of the 
relaxation adiabatic curve; the solution Z(_) corresponds to the segments C+A and BC_ (the 
segment AB is not considered because M 2 < 0 everywhere on this segment, and the segment 
C_B I is also not considered because it corresponds to a flow with a shock jump of rarefac- 
tion). On the relaxation adiabatic curve the symbols J+ and J_ denote its points of tangency 
to the Michelson lines drawn from the point 0 of the initial state, while the symbols C+ and 
C_ denote the points for which the radical in (3) vanishes. 

Straightforward but lengthy calculations show that the pairs of points (C+, J+) and 
(C_, J_) are not coincident with each other, The points J+ and J_ lie above the corresponding 
points C+ and C_ (this is due to the fact that the heat released and the heat capacity of the 
gas depend upon the temperature). It is not difficult to see that for the points J• we have 
the relation 

(0Z) and (~Z) the derivatives the relaxation adiabatic and the 
/ \ 

where "~ re1 ~P are along curve 

Poisson adiabatic curve [relation (4) leads to an equation between the quantities Yj• and 
TJ• equivalent to the condition of tangency of the Michelson lines to the relaxation adiaba- 
tic curve). Therefore, all of the properties of the Jouguet point of the detonation adiaba- 
tic curve are characteristic of the points J• Taking into account the equality determining 
the properties of the points J• and ZC+ = 1/12(7MC+2 + 5), YC+ = i/2.4(1.4 + MC+-2), we 
obtain the relation v = cfl (for the points C• and-v = Cel (fUr the points J• v is 
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velocity of flow of the equilibrium gas, cfl = (l.4piVz) I/2 is the speed of sound in a gas 

with ~'frozen" vibrational degrees  of freedom, and eel = Oil I 
2s dSlp ]1/2 

2h~~ dSlP i 
3 +  5k d- TJ 

is the speed of 

sound in the equilibrium gas with the vibrations of the molecules taken into account. 

We now discuss the case of interest here, that of the flow of a vibrationally excited 
gas. We note first that steady flows corresponding to the segments J+C+ and J_C_ of the re- 
laxation adiabatic curve do not occur. In fact, because the segments J+C+ and J_C_ lie 
below the corresponding Jouguet points J+ and J_, when the gas goes into the final state 
corresponding to these segments, it reaches equilibrium (with larger entropy) sooner than 
for the points above these segments of the adiabatic curve (this can easily be seen, if 
we take note that on the ZY diagram a change in the stage of a gas particle in the relaxa- 
tion zone is represented by a displacement of the point along the Michelson lines). 

The flow regimes corresponding to points of the segment J+A~A2(M ~ MJ+) on the relaxa- 
tion adiabatic curve. The flow velocity D satisfies D > c o . Hence, the gas is braked in 
the transition region and its pressure, density, and temperature increase continuously. 
The velocity of the gas exceeds the local value of the speed of sound everywhere inside 
the relaxation region. This type of flow of a vibrationally excited gas is known in the 
theory of combustion as weak detonation flow driven by an external source [8]. It can occur 
under certain conditions, for example using supersonic jets. 

For the steady flow regimes corresponding to the points of the segment BJ_ (0 < M 5 MJ_), 
the speed of the nonequilibrium gas in the first region must be less than the speed of sound, 
D < c o . In t]his case, the gas is accelerated and its pressure and density decrease mono- 
tonically. T]he flow remains subsonic everywhere (except for the regime J_, where v = Cel). 
This type of flow corresponds to the weak deflagration regime in the theory of combustion. 
It resembles the flow arising in the process of propellant combustion in the chamber of 
a reaction engine [8]. Besides the condition on the initial velocity, pressure drops must 
be provided in the first and third regions in order for this type of flow to occur. We 
note that, unlike the case of deflagration flow, as usually considered in the theory of 
combustion (when the rate of combustion of the mixture is determined by the propagation 
mechanism of the flames), shock-free deflagration flow of a vibrationally excited gas can 
exist for arbitrary values of the Mach number inside the interval 0 < M ! MJ_. 

For the characteristic steady flow regimes C+, J+, and J_, the velocity of the nonequilib- 
rium gas is found from the conditions determining the positions of the appropriate points 
on the relaxation adiabatic curve. A straightforward transformation allows one to represent 
these conditions in the form of equations for 0 < M 5 MJ_: 

Me+ = ( t  + 2'4~c____!+)1/~ + (2'4__F~7 +)1'2 ~ 

(i,4M~ +t)2 (5) ~OISo__Sp(rc+)l ~ Tc+= ~ :+ . _ 
= kr- 7 2,4Mc+ ; 

[ (6) 

where Y j ~ = Q + +  (Q~-5 Uj+)l/2; Qi:=O,5o~AS+-3(Uj• o~=2-~; A S i - - - S o - - S  p, (UJi);  Uj• 

_ .z "~1/2 u=UJ=h; are  the  roo t s  of the  equa t ions  a+Yj+ -- b• q__ (b~ + u• 0; a+ = 42 + 8a~d-~ . b+ = 42 

+ 6aAS+ .+ r (7 + aAS• u=uj+; d+ ----42 + 7"ahS+ + a (6 + ahS•177 

We now study the structure of the nonequilibrium flow for the flow regimes J+, C+, 
and J_. We chose vibrationally excited molecular nitrogen for this study. The distribution 
of the parameters of the medium in the transition region is given by the system of equations 
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a,, ,  =--N (~,,+1 -- ~,,), v = O, t, . . . ,  v , ,  
dx DN(o ) (7) 

which follow from the equations of unsteady vibrational kinetics for a single-component sys- 

tem of anharmonic oscillators [9 ,  Ch. 4 ,  Eq. ( 2 . 1 ) ] .  H e r e ,  ~ + l = Z s t  {Pv+ l , ~+ l - -P~ , ~+ l~b v +  

"* )} E Vt,Vt+ I v'-~l,~ l (qo+~,~ 9 ~ ' ~ + ~  O~,~+~ ~ o ~ ' ~  v.~ -- ; is the number of the last vibrational level that is taken 

into account (i.e., excitations with v > v, are neglected); ~v = Nv/N; Nv is the number of 

molecules per unit volume with quantum number v; N=~Nv; Nr = 9elm; Zst is the frequency 
V=9 

of molecular collisions; Pv+1,v, Pv,v+l are the probabilities of VT transitions; v~+1.~ , 

Q~,+i.~, ~.~+1, a r e  t h e  p r o b a b i l i t i e s  o f  W t r a n s i t i o n s .  E x p r e s s i o n s  f o r  t h e  p r o b a b i l i t i e s  o f  VT 

and W t r a n s i t i o n s  a r e  p r e s e n t e d  in  [ 9 ] .  The t e m p e r a t u r e  d e p e n d e n c e  o f  t h e  q u a n t i t i e s  P 1 , 0 ( T )  
0 I ( T )  which  e n t e r  t h e  e x p r e s s i o n s  f o r  t h e s e  p r o b a b i l i t i e s ,  was n o r m a l i z e d  in  a c -  and Q1,0 ' 

c o r d a n c e  w i t h  t h e  e x p e r i m e n t a l  d a t a  [ 1 0 - 1 2 ] .  The s y s t e m  o f  e q u a t i o n s  (7 )  was i n t e g r a t e d  
w i t h  t h e  h e l p  o f  t h e  s o l u t i o n  a l g o r i t h m  g i v e n  in  [13]  f o r  s t i f f  s y s t e m s  o f  o r d i n a r y  d i f f e r -  
e n t i a l  e q u a t i o n s ;  50 v i b r a t i o n a l  l e v e l s  o f  t h e  N 2 m o l e c u l e  were  t a k e n  i n t o  a c c o u n t  ( v ,  = 5 0 ) .  

The p r o b l e m  was s o l v e d  n u m e r i c a l l y ,  t a k i n g  i n t o  a c c o u n t  (2 )  and ( 3 ) ,  t h e  r e l a t i o n  S = 

t - - - Z E ~ %  (Ev i s  t h e  e n e r g y  o f  an a n h a r m o n i c  o s c i l l a t o r  w i t h  v i b r a t i o n a l  quantum number  v )  
~0 v=l . 

and the following boundary condition for the distribution function 

% ( x = 0 ) = % e x p  - - ~  

where  T v i b  i s  a p a r a m e t e r  ( t h e  v i b r a t i o n a l  t e m p e r a t u r e )  d e t e r m i n i n g  t h e  e x c i t a t i o n  o f  n i t r o -  
gen  m o l e c u l e s  e m e r g i n g  f r o m  t h e  f i r s t  r e g i o n .  We g i v e  t h e  r e s u l t s  f o r  t h e  c a s e  when t h e  
n o n e q u i l i b r i u m  f l o w  i s  c h a r a c t e r i z e d  by t h e  q u a n t i t i e s  So = 1, To = 300 K and N(0)  = 2 .67"  
10 zs am - a .  Then i t  i s  f o u n d  f rom (5 )  and (6 )  t h a t ,  in  t h e  f l o w  r e g i m e s  o f  i n t e r e s t  t o  u s ,  
t h e  g a s  mus t  be  i n j e c t e d  w i t h  t h e  v e l o c i t i e s  DJ+ = 3 . 8 5 3 c 0 ,  DC+ = 3 . 8 5 9 c 0 ,  and DJ_ = 0 . 2 4 5 c 0 .  

Graphs  o f  t h e  f u n c t i o n s  T ( x ) ,  p ( x ) ,  and S ( x )  a r e  shown in  F i g s .  2 and 3 f o r  s h o c k  and 
s h o c k - f r e e  f l o w ,  c o r r e s p o n d i n g  t o  t h e  p o i n t s  J+ and C+ on t h e  r e l a x a t i o n  a d i a b a t i c  c u r v e .  
For normal Jouguet detonation (Fig. 2) the pressure and temperature of the vibrationally 
excited gas jump to the values p = 17.2p0 and T = 3.82T 0. In a relaxation zone of width 
6 = 2 cm (the quantity 6 was determined from the condition of "emission" by each molecule 
with vibrational energy equal to 0.7 m0[S0 - Sp(TI)]), the pressure of the gas decreases 
monotonically to the value 9.47p0, the temperature increases to 5.57T 0, and the flow velocity 
increases up to the local speed of sound c e = 2.28c 0. In shock-free deflagration flow C+ 
(Fig. 3), the width of the relaxation zone is 6 = 0.5 m. In this zone, the gas slows down 
to a velocity equal to the speed of sound in a gas with "frozen" vibrational degrees of 
freedom (cf = 2.36c0). The temperature and pressure of the gas increase monotonically to 
the values 5.56T 0 and 9.09p0. 

In Fig. 4, for the shock-free flow regime J_, the functions T(x), p(x), and S(x) are 
shown. In this case, 6 = 0.6m. It is clear that the transition region does not have sharp 
boundaries with the equilibrium gas (a similar situation occurs for J+). This is explained 
by the significant rarefaction of the moving gas, which leads to slowing of the final stages 
of relaxation. In this case the velocity of the gas increases by a factor of 7.38 (the 
density correspondingly decreases to the value 0.13590). 

The existence of these steady flow regimes means that we can obtain reliable informa- 
tion on the rate constants of VV and VT exchanges for gas temperatures that are not too 
high, and we can also determine the parameters of the initial state of the nonequilibrium 
gas. The simplest method of studying the vibrational relaxation of strongly excited nitro- 
gen is the method of CO (or CO 2) tracing. Using infrared radiation, a small impurity of CO 
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(or CO 2) molecules allows one to get the spatial dependence of the relative population 
density of the first vibrational level of the molecules ~i(x). This method is used mainly 
in experiments with shock waves (see, e.g., [14-16]), but recently it has been used to study 
the dynamics of vibrationally excited and heated nitrogen during and after a UHF pulse dis- 
charge [17]. 

In all of the figures showing the structure of the characteristic nonequilibrium flows, 
we also show the relative population density ~i of the first vibrational level of the mole- 
cules as a function of the coordinate x. The dependence is nonmonotonic in all cases~ This 
is especially noticeable for C+. The same type of dependence of the quantity $i was observed 
in the after-discharge period of relaxation of vibrationally excited nitrogen in [17], where 
an explanation of this result was given. With the onset of the final stage of relaxation, 
the relative population of the first vibrational level becomes practically constant. Note 
that with the help of the CO (or CO 2) trace method, it is possible to determine the size 
of the transition region. 

Figure 5 shows the dependence of the width of the relaxation zone for the flow regimes 
J+, C+, and J_ [for T o = 300 K and N(m) = 2.67-i019 cm -s] on the initial energy of the vibra- 
tional degrees of freedom of the molecules, i.e., 6(S 0) and A(S 0) (A is the width of the 
transition region as determined from the condition of "emission" by each molecule with vibra- 
tional energy equal to 0.9~m0[S 0 - Sp(Ti)]. The calculation shows that when S o > 0.7, the 
widths of the relaxation zones for the regimes J+ and J_ can be approximated by the relative- 
ly simple expressions AJ+(S 0) = 54.1exp [-2.67(S 0 - i)] and AJ_(S 0 = 1984exp [-I.12(S 0 - i)], 
where the values of the widths are in millimeters. 

In order to study the possibility of a prolonge d existence of the flow regimes described 
above for a vibrationally excited molecular gas, it is also necessary to consider the sta- 
bility of these regimes to small perturbations of the medium. 

The authors thank I. A. Kossyi for constant interest in the work and for useful discus- 
sions, and also S. S. Yilippov for help in doing our numerical calculations. 

641 



. 

8. 

9 .  

1 0 .  

1 1 .  

12. 

13. 

14. 

15. 

16. 

17. 

LITERATURE CITED 

E. A. Buyanova, E. E. Lovetskii, et al., "Steady shock waves in a nonequilibrium di- 
atomic gas," Khim. Fiz., No. 12 (1982). 
F. G. Baksht and G. I. Mishin, "Effect of vibrational relaxation on the parameters 
of shock waves in a plasma of molecular gases," Zh. Tekh. Fiz., 53, No. 5 (1983). 
A. A. Rukhadze, V. P. Silakov, and A. V. Chebotarev, "Propagation of unsteady shock 
waves in vibrationally excited nitrogen," Kratk. Soobshch. Fiz., No. 6 (1983). 
V. D. Rusanov and A. A. Fridman, Physics of Chemically Active Plasmas [in Russian], 
Nauka, Moscow (1984). 
A. I. Osipov and A. V. Uvarov, "Structure of shock waves in a nonequilibrium vibra- 
tionally excited gas," Khim. Fiz., No. ii (1984). 
V. P. Silakov and V. S. Fetisov, "Shock waves in a nonequilibrium weakly dissociated 
gas of diatomic molecules with excited vibrational degrees of freedom," Khim. Fiz., 
No. I (1983). 
A. A. Vedenov, S. V. Drobyazko, et al., "Effect of acoustic waves in a discharge gap 
on the working of a pulse C02 laser in a special case," Teplofiz. Vys. Temp., 1-3, No. 
2 (1975). 
K. I. Shchelkin and Ya. K. Troshin, Gasdynamics of Combustion [in Russian], Izd. Akad. 
Nauk SSSR, Moscow (1963). 
B. F. Gordiets, A. I. Osipov, and L. A. Shelepin, Kinetic Processes in Gases and 
Molecular Lasers [in Russian], Nauka, Moscow (1980). 
Yu. S. Akishev, A. V. Dem'yanov, et al., "Determination of the constants of vibrational 
exchange in N 2 by heating," Teplofiz. Vys. Temp., 20, No. 5 (1982). 
L. A. Vasil'ev, I. V. Ershov, and S. S. Semenov, "Experimental study of nonequilibrium 
processes behind shock waves in air and nitrogen by the shadow method," Dokl. Akad. 
Nauk SSSR, 186, No. 5 (1969). 
A. Kantrowitz and P. W. Huber, "Heat-capacity lag measurements in various gases," J. 
Chem. Phys., 15, No. 5 (1947). 
A. Yu. Zakharov and V. I. Turchaninov, "STIFF program for the solution of stiff systems 
of ordinary differential equations," Inst. Appl. Math. Manual (1977). 
R. C. Millikan and D. R. White, "Vibrational energy exchange between N= and CO. The 
vibrational relaxation of nitrogen," J. Chem. Phys., 39, No. i (1963). 
R. E. Center and J. F. Newton, "Vibrational relaxation of N 2 by H20," J. Chem. Phys., 
68, No. 8 (1978). 
A. P. Zuev and B. K. Tkachenko, "Determination of the relaxation time of the level 
v = i of N 2 in the presence of water vapor," Izv. Vyssh. Uchebn. Zaved., Fiz., 193, 
No. 6 (1978). 
S. I. Gritsinin, I. A. Kossyi, et al., "Dynamics of vibrational excitation and heating 
of nitrogen during and after a UHF pulse discharge," Teplofiz. Vys. Temp., 22, No. 4 
(1984). 

642 


